首页> 外文OA文献 >Multidimensional HLLE Riemann solver; Application to Euler and Magnetohydrodynamic Flows
【2h】

Multidimensional HLLE Riemann solver; Application to Euler and Magnetohydrodynamic Flows

机译:多维HLLE黎曼解算器;对欧拉和欧拉的应用   磁流体动力学流动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work we present a general strategy for constructing multidimensionalRiemann solvers with a single intermediate state, with particular attentionpaid to detailing the two-dimensional Riemann solver. This is accomplished byintroducing a constant resolved state between the states being considered,which introduces sufficient dissipation for systems of conservation laws.Closed form expressions for the resolved fluxes are also provided to facilitatenumerical implementation. The Riemann solver is proved to be positivelyconservative for the density variable; the positivity of the pressure variablehas been demonstrated for Euler flows when the divergence in the fluidvelocities is suitably restricted so as to prevent the formation of cavitationin the flow. We also focus on the construction of multidimensionally upwinded electricfields for divergence-free magnetohydrodynamical flows. A robust and efficientsecond order accurate numerical scheme for two and three dimensional Euler andmagnetohydrodynamic flows is presented. The scheme is built on the currentmultidimensional Riemann solver. The number of zones updated per second by thisscheme on a modern processor is shown to be cost competitive with schemes thatare based on a one-dimensional Riemann solver. However, the present schemepermits larger timesteps.
机译:在这项工作中,我们提出了一种构造具有单个中间状态的多维黎曼求解器的一般策略,尤其要注意详细介绍二维黎曼求解器。这是通过在所考虑的状态之间引入恒定的解析状态来实现的,这为守恒定律系统引入了足够的耗散。还提供了解析通量的封闭形式表达式,以方便数值实现。证明黎曼求解器对于密度变量是正保守的。当适当限制流体速度的发散以防止在流体中形成气穴时,已证明欧拉流体的压力变量为正。我们还专注于多维上风电场的构建,以实现无散度的磁流体动力流。提出了二维和三维欧拉和磁流体动力流的鲁棒且高效的二阶精确数值方案。该方案基于当前的多维黎曼求解器。通过这种方案在现代处理器上每秒更新的区域数显示出与基于一维Riemann求解器的方案相比具有成本竞争力。但是,本方案允许更大的时间步长。

著录项

  • 作者

    Balsara, Dinshaw S.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号